References
The references used in the development of the Climate Change Projections for Wildfire in the United States
-
Abatzoglou, J.T., (2011). Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatology, 33, 121-131.
-
Abatzoglou, J.T., Brown, T.J., (2012). A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatology, 32: 772-780, https://doi.org/10.1002/joc.2312
-
Abatzoglou J.T., Kolden C.A., (2013). Relationships between climate and macroscale area burned in the western United States. Int'l J. Wildland Fire, 22, 1003-1020.
-
Abatzoglou J.T., and A.P. Williams, (2016). Impact of anthropogenic climate change on wildfire across western US forests. Proc. Nat’l. Acad. Sci. USA, 113(42), 11770–11775, https://doi.org/10.1073.pnas.1607171113.
-
Abatzoglou, J.T., Battisti, D.S., Williams, A.P. et al. (2021). Projected increases in western US forest fire despite growing fuel constraints. Commun Earth Environ 2, 227 https://doi.org/10.1038/s43247-021-00299-0
-
Almazroui, M., M.N. Islam, F. Saeed et al., (2021). Projected Changes in Temperature and Precipitation Over the United States, Central America, and the Caribbean in CMIP6 GCMs. Earth Syst Environ 5, 1–24. https://doi.org/10.1007/s41748-021-00199-5
-
Arora, V.K. and G.J. Boer, (2005). Fire as an interactive component of dynamic vegetation models. J. Geophysical Research, 110, G02008, 10.1029/2005JG000042.
-
Balch JK, Bradley BA, D’Antonio CM, Gómez-Dans J (2013). Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Global Change Biology 19, 173–183.
-
Balshi, M.S., A.D. McGuire, P. Duffy, M. Flannigan, J. Walsh, and J. Melillo, 2009: Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Global Change Biology 15. 578– 600.
-
Barbero R., J.T. Abatzoglou, and E.A. Steel, (2014). Modeling very large fire occurrences over the continental United States from weather and climate forcing. Environmental Research Letters, 9, doi:10.1088/1748-9326/9/ 12/124009.
-
Barbero, R., J.T. Abatzoglou, N.K. Larkin, C.A. Kolden, and B. Stocks, (2015). Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildland Fire, 24, 892–899. https://doi.org/10.1071/WF15083.
-
Bradstock, R.A., (2010). A biogeographic model of fire regimes in Australia: current and future. Global Ecology and Biogeography, 19, 145–158.
-
Burke, E.K., Kendall, G., (2005). Introduction. In Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques; Burke, E.K., Kendall, G., Eds.; Springer: Boston, MA, USA, p. 9.
-
Bürkner, P-C., (2017). brms: An R Package for Bayesian Multilevel Models Using Stan. Journal of Statistical Software, 80(1), 1-28. doi:10.18637/jss.v080.i01
-
Crimmins Michael A., Comrie Andrew C. (2004) Interactions between antecedent climate and wildfire variability across south-eastern Arizona. International Journal of Wildland Fire 13, 455-466. Hernández Ayala, J. J., Mann, J., & Grosvenor, E. (2021). Antecedent rainfall, excessive vegetation growth and its relation to wildfire burned areas in California. Earth and Space Science, 8, e2020EA001624. https://doi.org/10.1029/2020EA001624
-
Dalton, M., and E. Fleishman, editors. (2021). Fifth Oregon Climate Assessment. Oregon Climate Change Research Institute, Oregon State University, Corvallis, Oregon. https://doi.org/10.5399/osu/1160
-
Davis K.T., S.Z. Dobrowski, P.E. Higuera and M.P. Maneta, (2019). Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc Natl Acad Sci USA, 116(13), 6193–6198.
-
Ficklin D.L., and K.A. Novick, (2017). Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. Atmos., 122, 2061-2079.
-
Fosberg, M.A., et al., 1999: Strategy for a fire module in dynamic global vegetation models. Int. J. Wildland Fire, 9: 79– 84.
-
Gershunov, A., Guzman Morales, J., Hatchett, B. et al. (2021). Hot and cold flavors of southern California’s Santa Ana winds: their causes, trends, and links with wildfire. Clim Dyn 57, 2233–2248. https://link.springer.com/article/10.1007/s00382-021-05802-z
-
Goldammer, J.G., and C. Price, (1998). Potential Impacts of Climate Change on Fire Regimes in the Tropics Based on Magicc and a GISS GCM-Derived Lightning Model. Climatic Change, 39, 273–296. https://doi.org/10.1023/A:1005371923658.
-
Guzman-Morales, J., and Gershunov, A. (2019). Climate change suppresses Santa Ana winds of Southern California and sharpens their seasonality. Geophysical Research Letters, 46, 2772– 2780. https://doi.org/10.1029/2018GL080261
-
Harris, I., Osborn, T.J., Jones, P. et al. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7, 109 https://doi.org/10.1038/s41597-020-0453-3. Available online: https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/ [Accessed 11th January 2023]
-
Henderson-Sellers, A. (1993). Continental vegetation as a dynamic component of a global climate model: a preliminary assessment. Clim. Change, 23(4), 337–377.
-
Henne, P.D., Hawbaker, T. J., (2023). An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA, Ecological Modelling, Volume 477, 110277, https://doi.org/10.1016/j.ecolmodel.2023.110277.
-
Hernández Ayala, J. J., Mann, J., & Grosvenor, E. (2021). Antecedent rainfall, excessive vegetation growth and its relation to wildfire burned areas in California. Earth and Space Science, 8, e2020EA001624. https://doi.org/10.1029/2020EA001624
-
Hill, A.P., Connor J Nolan, Kyle S Hemes, Trevor W Cambron, Christopher B Field (2023). Low-elevation conifers in California’s Sierra Nevada are out of equilibrium with climate, PNAS Nexus, Volume 2, Issue 2, February 2023, pgad004, https://doi.org/10.1093/pnasnexus/pgad004
-
Juang, C. S., Williams, A. P., Abatzoglou, J. T., Balch, J. K., Hurteau, M. D., & Moritz, M. A. (2022). Rapid growth of large Forest fires drives the exponential response of annual Forest-fire area to aridity in the Western United States. Geophysical Research Letters, 49(5), e2021GL097131. https://doi.org/10.1029/2021GL097131
-
Kitzberger T., Falk D. A., Westerling, A. L., Swetnam, T. W. (2017). Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 12(12): e0188486. https://doi.org/10.1371/journal.pone.0188486
-
Lenihan, J.M., C. Daly, D. Bachelet, and R.P. Neilson, 1998: Simulating broad-scale fire severity in a dynamic global vegetation model. Northwest Science, 72, 91–103.
-
Li, F., M. Val Martin, M.O. Andreae, A. Arneth, S. Hantson, J.W. Kaiser, G. Lasslop, C. Yue, D. Bachelet, M. Forrest, E. Kluzek, X. Liu, S. Mangeon, J.R. Melton, D.S. Ward, A. Darmenov, T. Hickler, C. Ichoku, B.I. Magi, S. Sitch, G.R. van der Werf, C. Wiedinmyer, and S.S. Rabin, (2019). Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmos. Chem. Phys., 19, 12545–12567, https://doi.org/10.5194/acp-19-12545-2019, 2019.
-
Littell, J.S., D. McKenzie, D.L. Peterson, and A.L. Westerling, (2009). Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecological Applications, 19, 1003–1021.
-
Littell, J. S., O'Neil, E. E., McKenzie, D., Hicke, J. A., Lutz, J. A., Norheim, R. A., & Elsner, M. M. (2010). Forest ecosystems, disturbance, and climatic change in Washington State, USA. Climatic Change, 102(1–2), 129– 158. https://doi.org/10.1007/s10584-010-9858-x
-
Littell, J. S., McKenzie, D., Wan, H. Y., & Cushman, S. A. (2018). Climate change and future wildfire in the western United States: An ecological approach to nonstationarity. Earth's Future, 6, 1097– 1111. https://doi.org/10.1029/2018EF000878
-
Liu, Y., J. Stanturf, S. Goodric, 2010: Trends in global wildfire potential in a changing climate. Forest Ecol. Manag., 259, 685-697. https://doi.org/10.1016/j.foreco.2009.09.002
-
McKenzie, D., Z. Gedalof, D.L. Peterson, and P. Mote., 2004: Climatic change, wildfire, and conservation. Conservation Biology, 18, 890–902.
-
McKenzie D., Littell J.S. (2017). Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA? Ecol Appl. (1):26-36. doi: 10.1002/eap.1420
-
Moritz, M.A., M.A. Parisien, E. Batllori, M.A. Krawchuk, J. Van Dorn, D.J. Ganz, and K. Hayhoe, 2012: Climate change and disruptions to global fire activity. Ecosphere, 3(6),49, http://dx.doi.org/10.1890/ES11-00345.1.
-
MTBS Data Access: Fire Level Geospatial Data. (2017, July – 2022, May). MTBS Project (USDA Forest Service/U.S. Geological Survey). Available online: http://mtbs.gov/direct-download.
-
National Research Council. (2011). Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia. Washington, DC: The National Academies Press. https://doi.org/10.17226/12877.
-
Neiland, B. J., (1958). Forest and Adjacent Burn in the Tillamook Burn Area of Northwestern Oregon, Ecology, Vol. 39, No. 4. https://doi.org/10.2307/1931606
-
Nicholls Z, Lewis J, Makin M, Nattala U, Zhang GZ, Mutch SJ, Tescari E and Meinshausen, M. Regionally aggregated, stitched and de-drifted CMIP-climate data, processed with netCDF-SCM v2.0.0. (2020). Geosci Data J.. https://doi.org/10.1002/gdj3.113
-
NOAA National Centers for Environmental Information, Monthly Global Climate Report for Annual (2022). Published online January 2023, retrieved on May 17, 2023 from https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202213.
-
O'Neill, Brian C., Tebaldi C., van Vuuren D.P., et al., (2016).The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development. 9, 3461–3482. doi:10.5194/gmd-9-3461-2016
-
Pilliod, D. S., Welty, J. L., & Arkle, R. S. (2017). Refining the cheatgrass-fire cycle in the Great Basin: Precipitation timing and fine fuel composition predict wildfire trends. Ecology and Evolution, 7(19), 8126– 8151. https://doi.org/10.1002/ece3.3414
-
Prichard, S. J., et al. (2021). Adapting western North American forests to climate change and wildfires: 10 common questions. Ecological Applications 31( 8):e02433. 10.1002/eap.2433
-
Rabin, S.S., J.R. Melton, G. Lasslop, D. Bachelet, M. Forrest, S. Hantson, J.O. Kaplan, F. Li, S. Mangeon,D.S. Ward, C. Yue, V.K. Arora, T. Hickler, S. Kloster, W. Knorr, L.Nieradzik, A. Spessa, G.A.Folberth, T. Sheehan, A. Voulgarakis, D.I. Kelley, I.C. Prentice, S. Sitch, S. Harrison, and A. Arneth, (2017). The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017.
-
Riahi,K., vanVuuren,D.P., Kriegler,E.. (2016). The Shared Socioeconomic Pathways and their energy, landuse, and greenhouse gas emissions implications: An Overview, Global Environ. Chang., doi:10.1016/j.gloenvcha.2016.05.009, onlinefirst,2016.
-
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
-
Rigby R.A. and Stasinopoulos D.M. (2005). Generalized additive models for location, scale and shape, Appl. Statist., 54, part 3, pp 507-554.
-
Rogers, B. M., Neilson, R. P., Drapek, R., Lenihan, J. M., Wells, J. R., Bachelet, D., and Law, B. E. (2011). Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest, J. Geophys. Res., 116, G03037, doi:10.1029/2011JG001695.
-
Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J., (2014). Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854
-
Seager, R., A. Hooks, A.P. Williams, B. Cook, J. Nakamura and N. Henderson. (2015). Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol., 54, 1121-1141.
-
Short, Karen C. (2022). Spatial wildfire occurrence data for the United States, 1992-2020 [FPA_FOD_20221014]. 6th Edition. Fort Collins, CO: Forest Service Research Data Archive. https://doi.org/10.2737/RDS-2013-0009.6
-
Sousounis, P., A. Clarke, D. Fullam, (2021). Potential Impacts of Climate Change on U.S. Wildfire Risk by Mid Century, Society of Actuaries Research Institute Report, 48 pp. available from: https://www.soa.org/resources/research-reports/2021/climate-change-impacts-to-us-wildfire-risk/ .
-
Spracklen, D. V., Mickley, L. J., Logan, J. A., Hudman, R. C., Yevich, R., Flannigan, M. D., and Westerling, A. L. (2009). Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States, J. Geophys. Res., 114, D20301, doi:10.1029/2008JD010966.
-
Syphard, A.D., T. Sheehan, H. Rustigian-Romsos, and K. Ferschweiler, (2018). Mapping future fire probability under climate change: Does vegetation matter? PloS one, 13(8), e0201680, https://doi.org/10.1371/journal.pone.0201680.
-
Thrasher, B., Wang, W., Michaelis, A. et al. (2022). NASA Global Daily Downscaled Projections, CMIP6. Sci Data 9, 262. https://doi.org/10.1038/s41597-022-01393-4
-
Urbanski, S. P., M.C. Reeves, R.E. Corley, R.P. Silverstein, and W.M. Hao, (2018). Contiguous United States wildland fire emission estimates during 2003–2015, Earth Syst. Sci. Data, 10, 2241–2274. https://doi.org/10.5194/essd-10-2241-2018.
Venevsky, S., Y. Le Page, J.M.C Pereira, and C. Wu, (2019). Analysis fire patterns and drivers with a global SEVER-FIRE v1.0 model incorporated into dynamic global vegetation model and satellite and on-ground observations. Geoscientific Model Development, 12(1), 89. Gale AcademicOneFile, link.gale.com/apps/doc/A568337841/AONE?u=mlin_oweb&sid=googleScholar&xid=30f123ac.
-
Veraverbeke, S., Rogers, B., Goulden, M. et al., (2017). Lightning as a major driver of recent large fire years in North American boreal forests. Nature Clim Change 7, 529–534. https://doi.org/10.1038/nclimate3329
-
Verisk (2020). AIR Wildfire Model for the United States. Verisk Analytics Limited.
-
Westerling, A., and B. Bryant, (2008). Climate Change and Wildfire in California. Climatic Change, 87, 231-249. 10.1007/s10584-007-9363-z.
-
Williams, A. P., J. T. Abatzoglou, A. Gershunov, J. Guzman‐Morales, D. A. Bishop, J. K. Balch, and D.P. Lettenmaier, (2019). Observed impacts of anthropogenic climate change on wildfire in California. Earth's Future, 7, 892-910,https://doi.org/10.1029/2019EF001210.
-
Yue X, Mickley LJ, Logan JA, Kaplan JO. (2013). Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. Atmos Environ (1994); 77:767-780. doi: 10.1016/j.atmosenv.2013.06.003.